

PROGRESS AND PERSPECTIVES OF RESEARCHS ON HLB AND ITS VECTOR Diaphorina citri

Silvio A. Lopes. Nelson A. Wulff. Pedro T. Yamamoto. Marcelo P. Miranda Fundecitrus. Araraquara. SP. Brazil

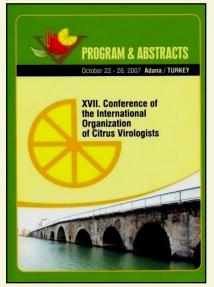
Source of information

FUNDECITRUS

International Research Conference on Huanglongbing

+

International Research Division Agriculture Forestry and Fisheries Research Council Secretariat Ministry of Agriculture, Forestry and Fisheries (MAFF)


Multilateral Research Network for

Food and Agricultural Safety

- The International Workshop for Prevention of Citrus Greening Disease in Severely Infested Areas -

December 6 and 7, 2006 at Tropical Agriculture Research Front (TARF), Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Japan

Organized by

Publications in periodical journals

Presentation topics

Introduction •HLB in the world •HLB in Brazil

Progress on HLB research

•A new liberibacter in Brazil

•Phytoplasmas in Brazil and China

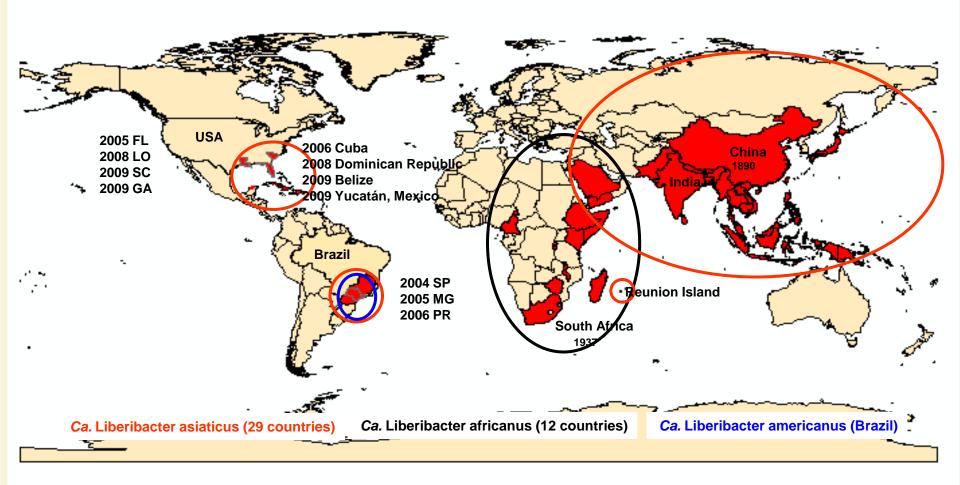
Liberibacter detection and quantification

•Ca. L. americanus versus Ca. L. asiaticus

•In planta distribution

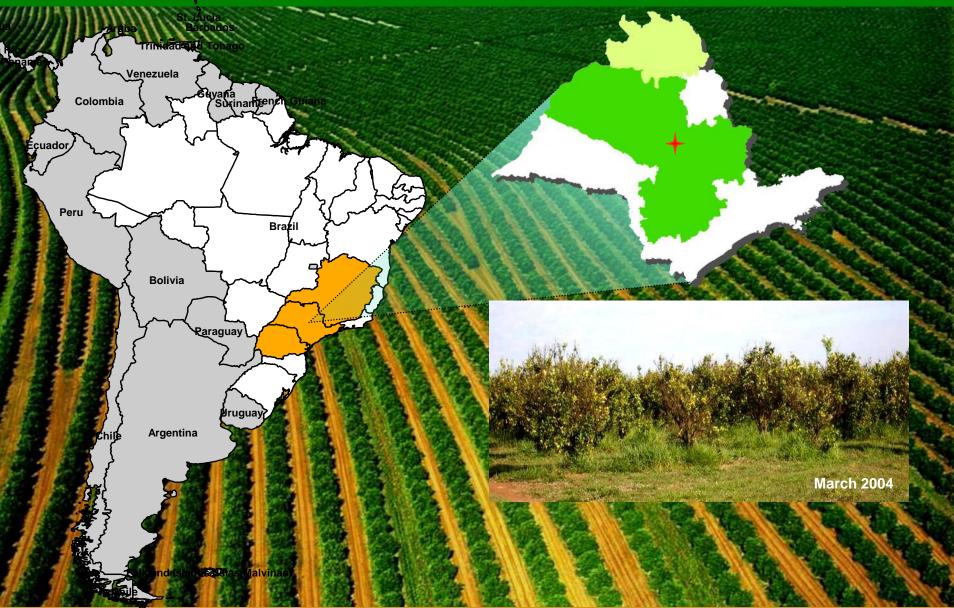
•Murraya paniculata as a host

Progress on Diaphorina citri research

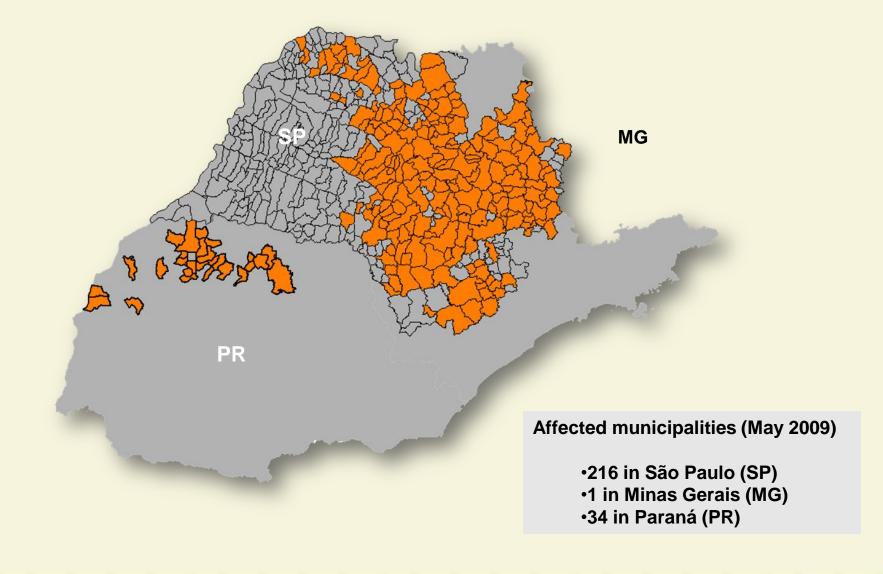

- Feeding behavior
- Liberibacter transmission
- •Temperature influence on life cycle
- Natural enemies
- Attractants and repellents

Benefits and perspectives of the research findings on HLB management

Summary and conclusion



HLB distribution in the world



HLB distribution in South America

HLB distribution in Brazil

Disease management practices in Brazil

Elimination of symptomatic trees

Insecticide applications

Planting healthy young trees

Introduction

Progress on HLB research

Progress on Diaphorina citri research

Benefits and perspectives of the research findings on HLB management

Summary and conclusion

Description of a new Liberibacter species in Brazil

FUNDECITRUS

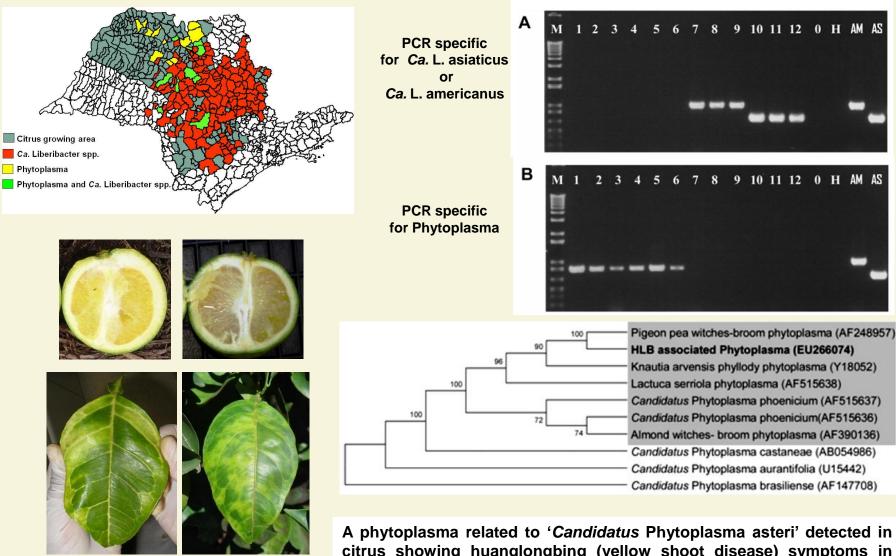
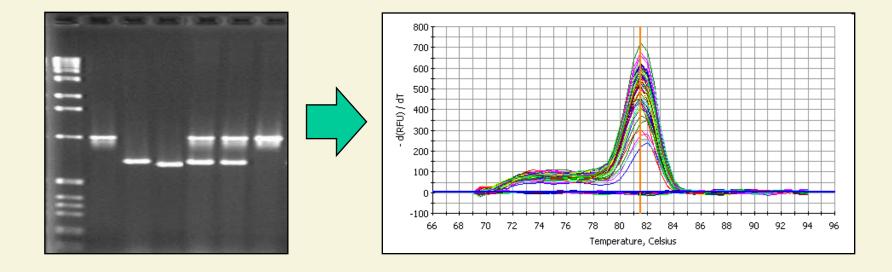

Fivad(CE)achevase(CE)pinasspatifcfor CLantians1(SrDA Copprisonvithenespochgsæpnasof CLaiationsant/CLafficans

 Image: Contract of the second seco

Teixeira et al. 2005

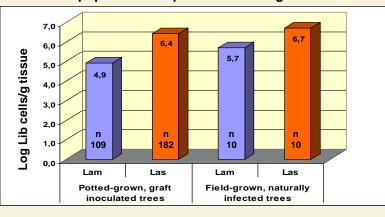
Description of two phytoplasmas associated with HLB-like symptoms



Teixeira et al. 2005

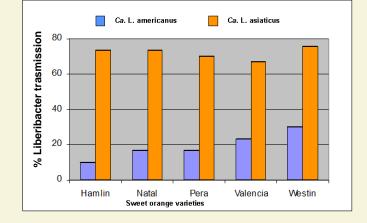
FUNDECITRUS

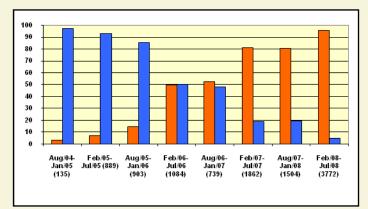
citrus showing huanglongbing (yellow shoot disease) symptoms in Guangdong. P. R. China. Chen et al. 2009.


Liberibacter detection and quantification

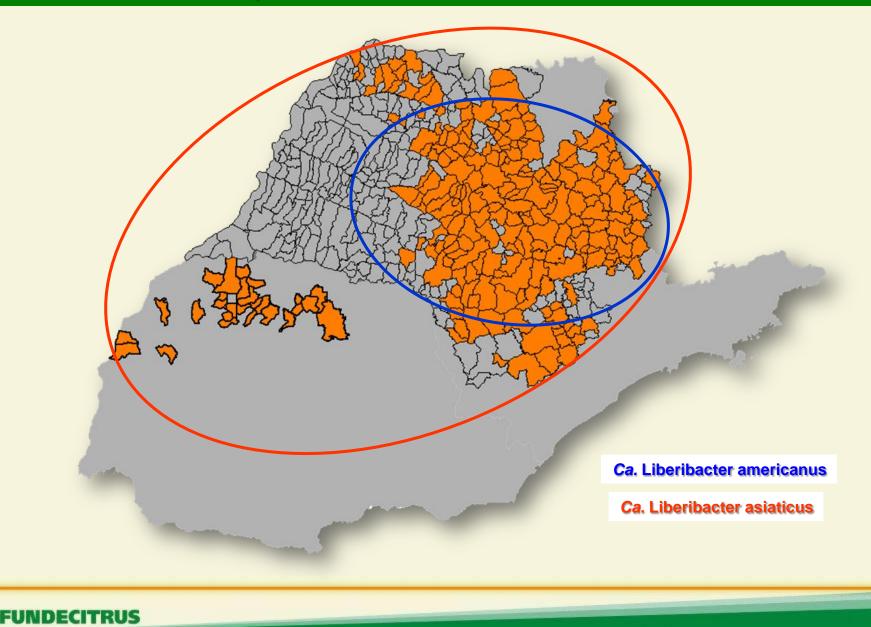
Li et al. 2006 Teixeira et al. 2008

Contrasting behavior of *Ca.* L. americanus and *Ca.* L. asiaticus in Brazil Multiplication efficiencies in citrus trees


Liberibacter populations in potted and field grown sweet oranges



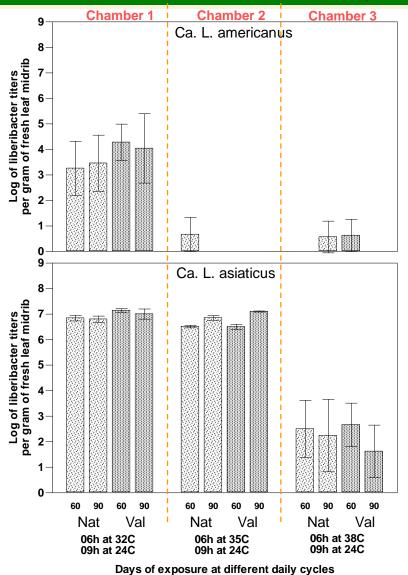
Lopes et al. 2009


Graft transmission effcienies of Liberibacter to sweet oranges

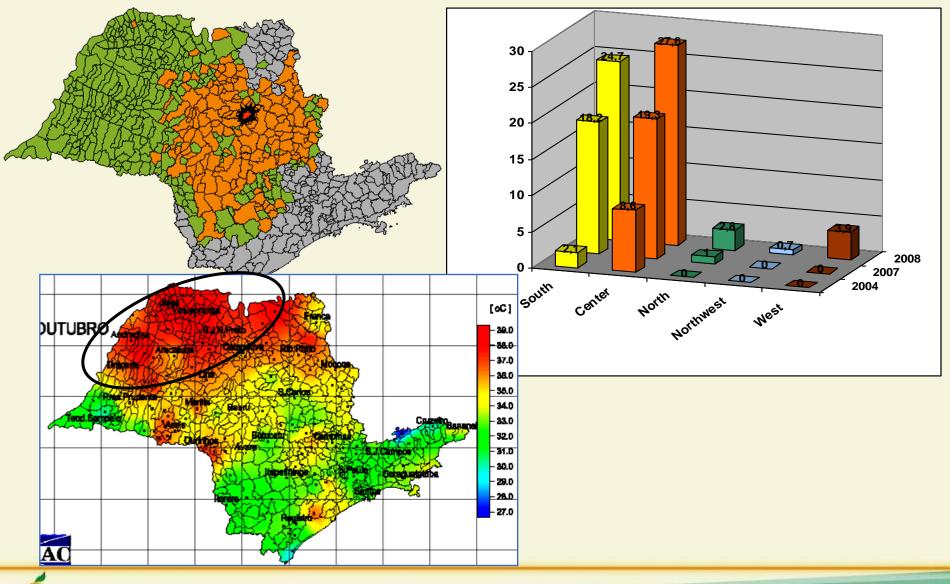
Liberibacter occurrence in São Paulo State overtime

Contrasting behavior of *Ca.* L. americanus and *Ca.* L. asiaticus in Brazil Multiplication efficiencies in citrus trees

Contrasting behavior of *Ca.* L. americanus and *Ca.* L. asiaticus in Brazil Sensitivity to high temperatures


Pruned

Contrasting behavior of *Ca.* L. americanus and *Ca.* L. asiaticus in Brazil Sensitivity to high temperatures


FUNDECITRUS

Lopes et al. 2009

Two years later

Contrasting behavior of *Ca.* L. americanus and *Ca.* L. asiaticus in Brazil Sensitivity to high temperatures

FUNDECITRUS

Ca. L. asiaticus distribution in citrus trees

Ca. L. americanus

Ca. L. asiaticus

Gottwald et al. 2008

Total 216 pruned trees Disease reappeared in 58.3% Total 376 pruned trees Disease reappeared in 62.5%

Lopes et al. 2007

Murraya paniculata as an alternative host of Liberibacter

Murraya distribution in the Araraquara region

Murraya paniculata as an alternative host of Liberibacter

Murraya survey in urban areas

Sampled 550 symptomatic trees in 17 municipalities

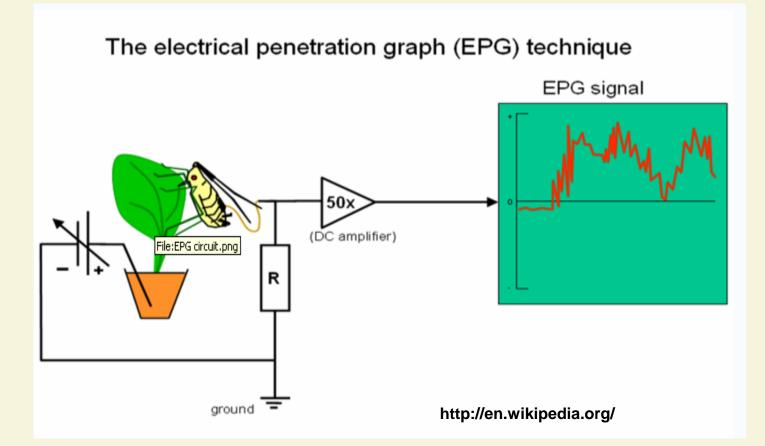
•11.4% positive for *Ca.* L. americanus
•0.5% positive for *Ca.* L asiaticus
•88.1% negative

FUNDECITRUS

Introduction

Progress on HLB research

Progress on Diaphorina citri research

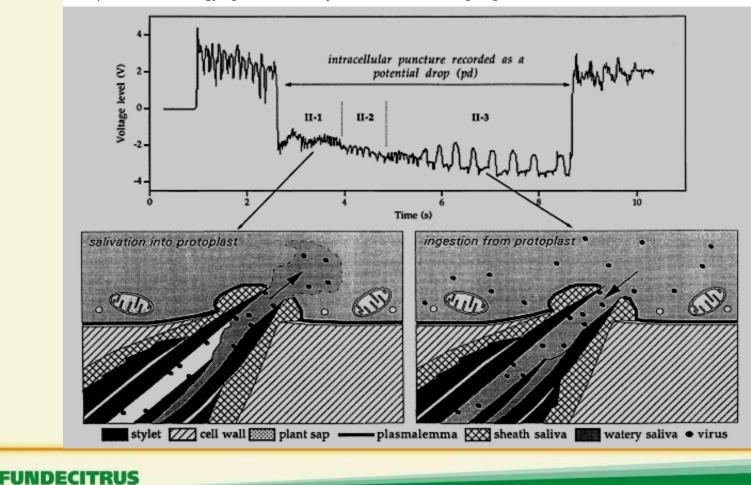

Benefits and perspectives of the research findings on HLB management

Summary and conclusion

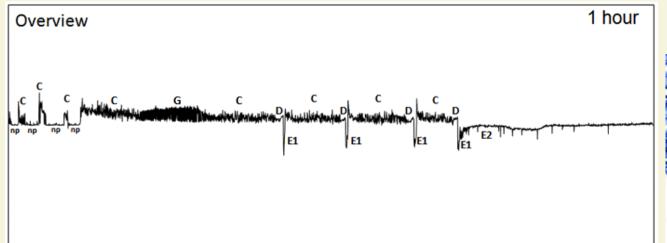
Diaphorina citri feeding behavior

Electrical penetration graphing Tjalingii.1988

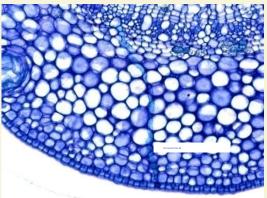
Diaphorina citri feeding behavior


Journal of General Virology (1997), 78, 2701–2705. Printed in Great Britain

SHORT COMMUNICATION


Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses

B. Martín,¹ J. L. Collar,¹ W. F. Tjallingii² and A. Fereres¹


¹ Centro de Ciencias Medioambientales, CSIC, Serrano 115 dpdo., 28006 Madrid, Spain ² Department of Entomology, Agricultural University, POB 8031, 6700 EH Wageningen, The Netherlands

Diaphorina citri feeding behavior

Cross section of a leaf petiole showing the *D. citri* stylet pathway

Stylet activities

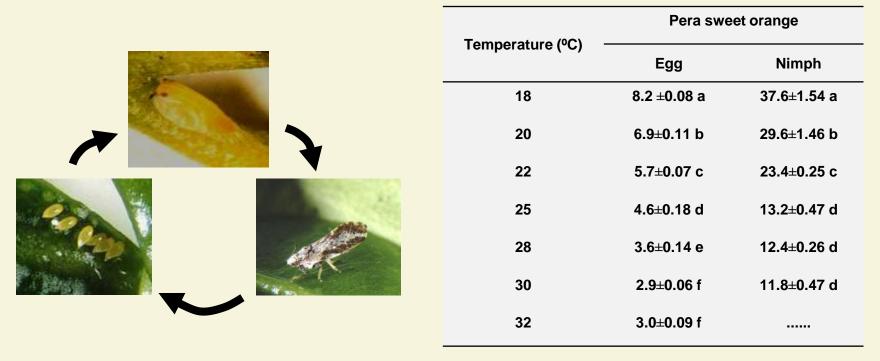
- (i) penetration of the stylet into the intercellular parenchyma
- (ii) contact of the stylet with the phloem sieve tube
- (iii) salivation
- (iv) phloem sap ingestion
- Average time for the stylet to reach the phloem -154 min
- Phloem sap ingestion continued for average 206.1 min over an 8 hour (240 min) recording period

Bonani et al. 2008

Liberibacter transmission by D. citri

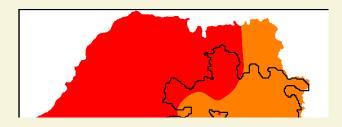
Citrus leaf developmental stage		Young leaves	Old leaves
	Reached the phloem (after 96 hour)	80%	20%
	<i>Ca.</i> L. asiaticus	54%	10%
	acquisition efficiency		Bonani et al. 2008

D. citri developmental stage


Nymphs

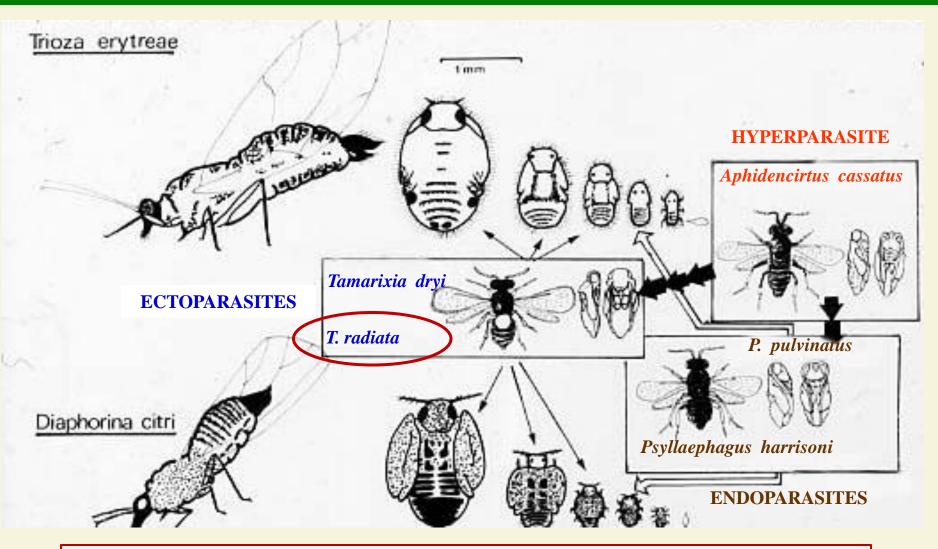
Adults

Temperature influences on *D. citri* life cycle



Parra et al. 2007

Temperature of -1.9°C for up to 10 hours killed a relatively low percentage of adults. while -5.0 to -5.5 °C for 4 hours or longer killed 95 to 100% adults Hall. 2008



Temperature favorability for *D. citri* in São Paulo State

D. citri natural enemies

D. citri parasitism rates of 27.5 to 80.0% have been observed in SP and of 56% in Florida ! Parra et al. 2006; Qureshi et al. 2009

D. citri natural enemies

Tamarixia

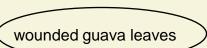
D. citri parasitized nymphs

Non-parasitized nymphs

D. citri attractants and repellents

Attractants

Wenninger et al. 2009



Zaka and Zeng. 2008

Ishinose et al. 2008

dimethyl disulfide

Rouseff et al. 2008

Introduction

Progress on HLB research

Progress on Diaphorina citri research

Benefits and perspectives of the research findings on HLB management

Summary and conclusion

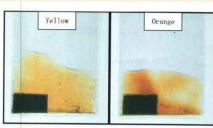
Benefits and perspectives - PCR in the HLB diagnosis

FUNDECITRUS

PCR advantages

- •High sensitivity
- High specificity
- Estimation of bacterial titers

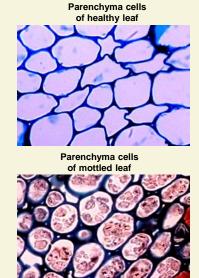

PCR disadvantages


- Costly reagents
- •Costly thermo-cyclers and centrifuges
- Time consuming
- Specialized personnel
- Detect live and dead cells

Use limited to

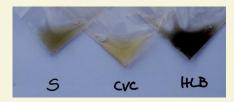
- Research
- Train inspectors for symptom recognition
- •Confirmation of HLB in leaf samples with questionable symptoms

Benefits and perspectives - lodine test in field diagnosis



Negative

Positive Takushi et al. 2007



Heredia et al. 2006

In Florida, the iodine and qPCR tests agreed for 76% of the samples

The test is useful for field diagnosis but unsuitable as a substitute for PCR confirmation

Chamberlain and Irey 2008

Benefits and perspectives - Field identification of symptomatic trees

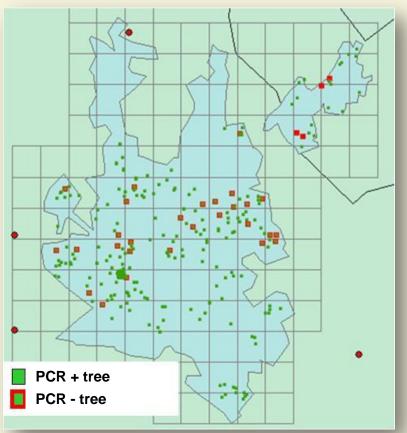
48% efficiency

60% efficiency

Belasque 2006

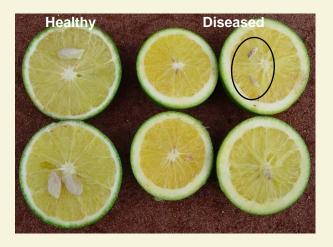
Benefits and perspectives

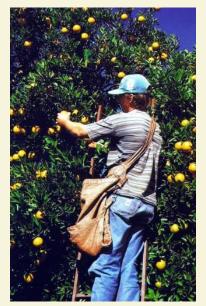
The role of asymptomatic citrus as source of inoculum


		5 Months 6 Months			7 Months				
Plant number	Symptom ^w	Ct*	Titer ^y	Symptom	Ct	Titer	Symptom	Ct	Titer
Ca. L. americanus									
1	mt, -	22.09	5.79	mt, -	24.12	6.24	, df	23.88	6.24
2	mt, df	27.70	4.34	mt, df	24.43	5.92	mt, df	25.04	5.63
3	mt, -	27.56	3.95	mt, -	23.06	6.28	mt, df	26.68	5.17
4	mt, -	21.75	6.16	mt, -	26.98	5.13	mt, df	27.32	5.12
5	-, df	37.06	1.49	, df	23.98	6.16	mt, df	25.47	5.51
6		-	-	-,-	-	-		32.49	3.51
7	-, -	-	-	-,-	-	-	-,-	34.17	2.91
8-10	-, -	-	-	-,-	-	-		-	-
Average		27.23	4.35		24.51	5.95		27.86	4.87
'Ca. L. asiaticus'									
1	mt, -	17.77	7.47	mt, -	18.75	7.31	mt, df	20.51	7.20
2 Symptomatic	mt, -	17.61	7.42	mt, -	17.93	7.44	mt, df	20.11	7.22
3	mt, df	17.52	7.36	mt, df	17.92	7.44	mt, df	19.78	7.47
4	-, df	19.36	6.78	-, df	18.74	7.27	mt, df	19.97	7.34
5	mt, -	19.76	6.97	-, df	18.77	7.13	, df	20.57	7.15
6		20.17	6.39		19.26	6.77	-, df	20.85	7.05
Asymptomatic		17.67	7.29	-,-	18.70	6.94	-, df	20.51	7.09
8 Asymptomatic	-,-	22.41	6.17	-, df	19.12	7.45	-, df	19.51	7.13
9	-,-	21.55	6.50	-,-	22.22	6.37	mt, df	21.06	6.95
10	-, -	17.66	7.42	-,-	21.62	6.64	mt, df	20.82	6.84
Average		19.15	6.98		19.30	7.08		20.33	7.15

mt = mottling df = mineral defficiency

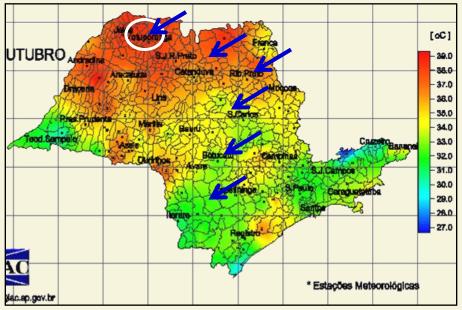
Benefits and perspectives The role of *Murraya paniculata* as source of inoculum


Distribution of PCR + and - trees of *M. paniculata* in the city of Araraquara, SP

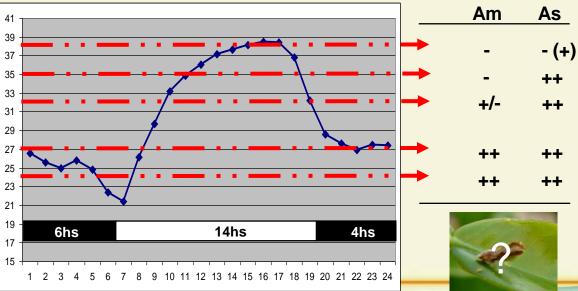

FUNDECITRUS

Benefits and perspectives - The question of Liberibacter seed transmission

Authors	Transmission to seedlings	Detection method	Symptoms
Graham et al, 2008	$\frac{2006}{7/59 \rightarrow 3/7 \rightarrow 1/3}$	qPCR	No information
	<u>2007</u> 6/723	qPCR	No information
	<u>2008</u> 5/290	qPCR	No information
Hartung et al, 2008	1/89	qPCR	Stunting, defoliation, chlorosis
Zhou et al, 2008	14%	qPCR	Atypical (vein yellowing, leaf curling) only when stressed by nutrient deficiency



Benefits and perspectives The question of Liberibacter sensitivity to high temperatures


A typical hot summer day in Votuporanga, NW of SP

Liberibacter multiplication in citrus

FUNDECITRUS

Benefits and perspectives *D. citri* attractants and repellents

Guava/citrus inter-planting Not practical in Brazilian commercial groves

Synthesized repellant compounds to be released slowly in the field ?

A transgenic citrus tree repellant to D. citri?

Another repellant plant species not competing with citrus to cover citrus fields ?

Introduction

Progress on HLB research

Progress on *Diaphorina citri* research

Benefits and perspectives of the research findings on HLB management

Summary and conclusion

Summary and Conclusion

Main research progress in the last 5 years

✓ Three additional bacteria have been found associated with the HLB-like symptoms
 ✓ More sensitive detection methods have been developed

✓ The ornamental *M. paniculata* was found infected with both liberibacters in Brazil
 ✓ The competitive relationship of *Ca.* L. americanus and *Ca.* L. asiaticus was defined
 ✓ Multiplication and distribution of Liberibacters in citrus trees were demonstrated
 ✓ Feeding behavior, biology and population dynamics of the insect vector, as well as it attractiveness or repellency to visual cues, and to volatiles released from host and non host plants, were determined

Greater understanding of how the host-pathogen-vector relationship works

✓ Improvements of management practices

- Expectation for the development of new practices
- ✓Most promising areas are
 - synthesis of volatiles that repel D. citri
 - development of transgenic citrus trees that resist pathogen attack or prevent vector transmission

Summary and Conclusion

Muchas Gracias