

LIBERIBACTERS ASSOCIATED WITH CITRUS HUANGLONGBING AND POTATO ZEBRA CHIP

Edwin L. Civerolo USDA – Agricultural Research Service Parlier, California <u>edwin.civerolo@ars.usda.gov</u>

'Candidatus Liberibacter' Species – Associated Diseases

- > Citrus Huanglongbing
- > Potato Zebra Chip
- Tomato/Potato yellows
- Haywire
- Other solanaceous crops
- o Carrot carrot yellows ?
- **Other ?** [wide host range]

'Candidatus Liberibacter' Species-Associated Diseases

- 'Ca. Liberibacter asiaticus' Asian
- 'Ca. Liberibacter americanus' (So.) American
- 'Ca. Liberibacter africanus' African

 'Ca. Liberibacter africanus subsp. capensis' – African (South Africa)

[associated with HLB-like leaf mottling in Cape chestnut (Calodendrum capense)]

• *'Ca.* Liberibacter solanacearum' (Liefting et al., 2009)

(syn. '*Ca.* Liberibacter psyllaurous' (Hansen et al., 2009))

psyllaurous & solanacearum

- > associated with solanaceous crops/plants
- > probably synonyms based on 16S rRNA gene sequence analyses
- * suggested preferred phytopathological name:

"Candidatus Liberibacter solanacearum"

Alternative:

"*Candidatus* Liberibacter solanacearum" (syn. "*Candidatus* Liberibacter psyllaurous")

Proposed name published in IJSEM Description of the bacterium provided Reference material of the described strain is available

Phylogenetic Relationships

Lin *et al* 2009

0.02

CHARACTERISTICS

- **Pleomorphic** \triangleright
- > Triple-layered cell envelope
 - Outer cell wall
 - Peptidoglycan layer
 - Inner cytoplasmic membrane

CLam

- (Nutritionally) fastidious
- Non-culturable *in vitro* (to date)
- Phloem-limited and transmitted by psyllids
- Koch's postulates have not been conclusively fulfilled
- Etiologies of the diseases not conclusively determined
- HLB long latent period; complex, variable syndrome; nutrient deficiency-like symptoms
- ZC short latent period; complex syndrome; symptoms similar to other potato diseases

LIBERIBACTER-ASSOCIATED DISEASE DETECTION / DIAGNOSIS

- > Visual symptoms preliminary
- Confirmation by PCR detection/identification of
 'Ca. Liberibacter species' in symptomatic tissue
 based primarily on ribosomal 16S RNA and β operons
- > Other methods available:
 - · ELISA [HLB]
 - · DNA probes dot-blot hybridization [HLB]
 - Iodine reaction [HLB; ZC?]
 - · Biological indexing [HLB]
 - TEM / SEM [HLB; ZC]

Need improved, robust, reliable methods & technology to detect clinically asymptomatic plants

LIBERIBACTER DIAGNOSTICS

- > Limitations of PCR-based detection of Liberibacters
 - Relies on detection of the bacterium
 - Detection of sub-clinical (pre-syptomatic/asymptomatic) plants may be problematic?
 - Could be enhanced by:
 - Detection of Liberibacter-specific host response(s)?
 - Detection of disease-specific biomarker(s)?

Fluorescent Dye-based qPCR and HRMCA for Detection and Genotyping Liberibacter Species

Amplicon melting temperatures:

Lam 73.2 °C, Las 75.2 °C, Laf 76.1 °C, and Lso 76.5 °C.

DISEASE ETIOLOGY

- Single etiological / causal agent
- > Multiple etiological / causal agents?
- > Different etiologies in different regions?
- Different diseases, same etiological agent(s)?
 (Bové, 2006; Wen et al, 2009)
- Complex pathosystems
- Various & variable symptoms associated with a variety of biotic (pathogenic & non-pathogenic) & abiotic factors

DISEASE ETIOLOGY

- Modified Koch's postulates support etiological role of 'Candidatus Liberibacter' species
 - Transmission
 - Psyllid
 - * Grafting
 - * Dodder
 - PCR detection
 - > TEM / SEM observation of pleomorphic bacteria-like cells characteristic of 'Ca. Liberibacter spp.' in phloem tissue
 - Genomics draft genome sequences
 - Potential virulence genes/pathogenicity factors identified
 - Expression of virulence and CL-specific genes
 in diseased plants?

DISEASE ETIOLOGY

Not conclusively determined / established

Other Potential Pathogens Associated with HLB & ZC

HLB Diseases

- > Phytoplasmas
 - aster yellows (China)
 - » pigeon pea witches' broom (Brazil)
- > Other bacteria?
- > Virus(es)
- > Other?

ZC and Similar Potato Diseases

> Phytoplasmas

- aster yellows
- clover proliferation
- Stolbur?
- « 'Ca. Phytoplasma americanum' (NE)
- * 'Ca. Phytoplasma australiense' (NZ)
- > Other bacteria?
 - atypical strains of Serratia marcescens
- > Virus(es)?
- > Other?

Polymerase Chain Reaction (PCR) Detection of 'Candidatus Liberibacter asiaticus & 'Candidatus Phytoplasma asteris' in Citrus with HLB / HLB-like Symptoms in China

Parameter	PCR Result					
	CLas +	CPa +	CLas + CPa +	CLas - CPa -	CLas + CPa -	CLas - CPa +
Number of Samples	89	110	69	11	20	41
%	26.2	32.4	20.3	3.2	5.9	12.0

Two surveys – 2006, 2007

11 cities in Guangdong Province, PRC

340 samples

C. sinensis (sweet orange), C. maxima (pummelo), C. reticulata (mandarin)

CLas = 'Ca. L. asiaticus'; CPa = 'Ca. P. asteris'

Nested PCR – CLas: fD1/D2 (1st round); OI1/OI2c (2nd round)

CPa: P1/P7 (1st round); fU5/fU3 (2nd round)

EPIDEMIOLOGY

Wide Host Range

Unknown if alternate & perennial weed hosts are epidemiologically significant as reservoirs / sources of Liberibacter inoculum to initiate infection and disease development in citrus and potato

EPIDEMIOLOGY

- > Transmitted by:
 - Psyllids
 - Grafting
 - Dodder
 - Potato tuber seed pieces
 - (True seed not conclusive)

May be insect endosymbionts that can be plant pathogens

EPIDEMIOLOGY

> in planta distribution:

- extensive, but uneven / non-uniform, colonization
- occur in various tissues from different part of HLB- & ZC-affected citrus and potato, respectively (based on PCR analyses)

3 species & 1 sub-species (to date)

- o asiaticus (Clas)
- africanus (CLaf)
- o africanus subsp. capensis (CLafc)
- o solanacearum (CLso) (syn. psyllaurous)

o other?

No conclusive link between: CLso and HLB or

CLas, CLaf or CLam and ZC

(at this time)

Tandem Repeat Number Analyses Locus: CLIBASIA_01645 = bacteriophage repressor protein C1

Guangdong ≠ Florida ≠ Sao Paulo

Distribution of Tandem Repeat Numbers in '*Candidatus* Liberibacter asiaticus' Strains from Different Citrus Hosts Guangdong (China) and Florida (U.S.)

Locus: CLIBASIA_01645 = bacteriophage repressor protein C1

All Strains

TRN₃₋₁₆ No TRN = 9, 10, 11, 12 TRN ≤5, TRN = 6, TRN ≥7

Florida Strains					
TRN ₅ = 84.4%					
TDN - 11 10	/				

<u>Guangdong Strains</u> TRN₇ = 47.6% TRN_{>10} = 97.0%

Genetic Variation among '*Candidatus* Liberibacter solanacearum' in Commercial Field Potato Samples

Single Nucleotide Polymorphisms

39 strains	40 strains		
 2 SNPs – 16S rDNA 1,171 bp sequence primer set ZCf/Ol2c 	 6 SNPs – partial 16S-ISR-23S rDNA 946 or 948 bp sequence primers Lp Frag4-1161 & 480R 		
 Two clades (Clades C1 & C2) 	✤ Two clades (Clades C1& C2)		
C1 – 99.8% similarity with C2; 99.8-100% similarity with ZC CLso 94.8-97.1% similarity with HLB CLas, CLaf, CLam	C1 – 99.3% similarity with C2 99.8-100% similarity with ZC CLso 85.6-90.5% similarity with HLB CLas, CLaf, CLam		

- CLso-PY and CLso-HW strains identical to CLso-ZC strains
- CLso-PY and CLso-HW strains distributed in both sub-clades in each group based on 16S rDNA and partial 16S-ISR-23S rDNA
- Solution Structure Stru

Candidatus Liberibacter' Species Genome Research

- Provide insights of structures & organization and of Liberibacter genomes
- Identify genes and associated metabolic pathways that help predict the lifestyle and nutritional requirements to facilitate culture *in vitro*
- Identify candidate genes to target sites for disease mitigation
- Develop biomarkers for Liberibacter detection
- Reveal genetic features of Liberibacters acquired, modified, or lost through evolutionary adaptation, host selection and/or alteration of evolutionary potential

Genome-wide Bioinformatics & Functional Analyses

- May not have all of the genes encoding all of the proteins necessary for 'housekeeping' activities and metabolic pathways
- Genes encoding proteins that might be virulence or pathogenicty identified
- Functional characterization of proteins potentially involved in Liberibacter-host & Liberibacter-psyllid interactions
- Differentiation of putative biotypes / pathotypes

Genomics

Reconstruction of Metabolic Pathways of CLso

- Draft sequences of CLas-FL & CLso-US genomes assembled & annotated
- Main differences are genome rearrangements & genomic islands
- CLas-China, CLam & CLso-NZ genomes being sequenced
- CLaf (& CLafc?) expected to be sequenced

'Candidatus. Liberibacter' Genome Sequence and Analysis

- ≻ ~1.23-1.26 Mbp
- > GC content ~35%
- > 1,126 annotated proteins
 - 815 shared between Las & Lso
 - toxin proteins
 - secretion systems
 - transport & motility factors

MANAGEMENT OF LIBERIBACTER-ASSOCIATED DISEASES

- Avoidance, removal of inoculum
 - o prevent introduction, establishment & spread
 - o phytosanitary measures
 - ✓ quarantines
 - eradication
 - < certification programs</pre>
 - propagation & use of Liberibacter-free planting stock
- Reduce Liberibacter transmission
 - $_{\circ}$ psyllid vsctor control
 - chemical
 - ✓ biological control (if possible)
- Cultural practices?

MANAGEMENT OF LIBERIBACTER-ASSOCIATED DISEASES

- Long-term, sustainable management may be based on host resistance – pathogen(s); psyllid
 - * genetic
 - * transgenic
 - * induced
 - Effective, economical management likely to be based on integrated strategy
 - Other novel approaches needed

SUMMARY

- > Widespread
- > Broad host ranges
- Associated with some economically-important diseases
- > Role in disease is not conclusively known
- Likely involved in disease etiology, but may not be only / sole etiological agent in all cases
- Genetically & pathogenically distinct within & among species
- > Biology & ecology poorly understood
- Genomics / bioinformatics research likely to lead to identification of biomarkers for Liberibacter and/or disease detection and candidate genes to target for disease mitigation